Representation Theory of Finite Groups

100 Points

Notes.

(a) Begin each answer on a separate sheet.

(b) Justify all your steps. Assume only those theorems that have been proved in class. All other steps should be justified.

(c) \mathbb{Z} = integers, \mathbb{Q} = rational numbers, \mathbb{R} = real numbers, \mathbb{C} = complex numbers.

1. [5 points] Let V, W be vector spaces over a field k having basis $\{e_1, e_2, e_3\}$ and $\{f_1, f_2, f_3\}$ respectively. Express

 $(2e_1 + e_2 + e_3) \otimes (f_1 + f_2 + 2f_3) + (e_1 - e_2 + e_3) \otimes (f_1 - f_2 + f_3)$

as a linear combination of the basis $\{e_i \otimes f_j\}_{i,j}$ of $V \otimes_k W$.

2. [15 points] Let V, W be vector spaces over a field k having basis e_1, \ldots, e_m and f_1, \ldots, f_n respectively. Let $u = \sum c_{ij}(e_i \otimes f_j)$ be an element of $V \otimes_k W$ with $c_{ij} \in k$.

- (i) Prove that if u is a pure tensor, i.e., there exist $v \in V$ and $w \in W$ such that $u = v \otimes w$, then $c_{ij}c_{kl} = c_{il}c_{kj}$.
- (ii) Prove the converse: To simplify the presentation, assume $c_{11} = 1$ and prove that if the above relations hold among the coefficients, then u is a pure tensor.

3. [14 points] Let $f: A \to B$ be a homomorphism of commutative rings and let M, N be *B*-modules. Thus we may consider M, N to be *A*-modules in the obvious natural way.

- (i) Show that there is a natural map of A-modules $\pi: M \otimes_A N \to M \otimes_B N$ which is surjective. (Note: Do you have a formula for π ?)
- (ii) In the situation of $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \to \mathbb{C} \otimes_{\mathbb{C}} \mathbb{C}$ verify whether $i \otimes 1 = 1 \otimes i$ in any of these two modules where $i = \sqrt{-1}$.

4. [10 points] Let $f: A \to B$ be a homomorphism of commutative rings. Let M be an A-module and N a B-module so that N may also be considered to be an A-module in a natural way. Find a natural isomorphism $(M \otimes_A B) \otimes_B N \xrightarrow{\sim} M \otimes_A N$. (Hint: Use some of the isomorphisms proved in class.) 5. [12 points] Let V be a vector space over a field k with basis e_1, e_2, e_3, e_4 . Let $u = \sum a_i e_i$ and $v = \sum b_j e_j$ be elements of V where $a_i, b_j \in k$.

- (i) Write a basis of $\operatorname{Sym}^2(V)$.
- (ii) Express $u \cdot v$ in your basis above.
- (iii) Write a basis of $Alt^2(V)$.
- (iv) Express $u \wedge v$ in your basis above.

6. [10 points] Let V be a vector space over a field k where $char(k) \neq 2$. Let $u, v, w \in V$. Simplify the following products in the exterior algebra of V.

(i)
$$((u \wedge v) + w) \wedge ((u \wedge v) + w)$$
, (ii) $((u \wedge v) + w) \wedge ((u \wedge w) + v)$.

7. [12 points] Let k be a field and let $R = M_2(k)$ the ring of 2×2 matrices over k. Let $I \subset R$ be a proper nonzero left ideal, i.e., $(0) \neq I \neq R$. Prove that there exists a unit $u \in R$ (i.e., u is an invertible matrix) such that Iu equals the left ideal consisting of matrices whose second column is zero. (Hint. Right multiplication by u amounts to performing column operations.)

8. [10 points] Let k be a field and R = k[X], the polynomial ring in one variable. Let M be an R-module. Prove that M is simple (irreducible) if and only if $M \xrightarrow{\sim} k(\alpha)$ where α is an element in some finite field extension $k \to K$.

9. [12 points] Let k be an algebraically closed field of characteristic 0. Let G be a finite group. Use Artin-Wedderburn Theorem and semi-simplicity of group rings over k to prove the following.

(i) G is abelian if and only if there is an isomorphism of algebras $k[G] \xrightarrow{\sim} k \times k \times \cdots \times k$. (ii) If $G = S_3$, then $k[G] \xrightarrow{\sim} k \times k \times M_2(k)$. (Hint: Write 6 as a sum of squares.)